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Hardware/software design challenges

• Adaptive computing

— Reconfigures connections.

— Might need to allocate more resources during the initial 
stages of learning

• Algorithms are still evolving

— Might be mature enough for some application areas

— Inference algorithms might be more stable than 
learning algorithms

• Solution?

— Abstract and formalize

— Parameterize the degrees of freedom
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Aspiration

• Can we come to a set of mathematical equations that 
model cortical function?

—Something like Maxwell’s equations for 
electromagnetic waves

—Assigns functions/equations for laminar circuits

• Audacious

—But this is the season of Hope and Change

—Yes we can!!
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Hierarchical Temporal Memory

• Is a model for neocortical operation

—Nodes organized in a hierarchy

—Each node uses the same algorithm



Features of HTM (Principles of Cortex-like computation)

•Hierarchy in space and time

•Feed-forward and feedback connections

•Common cortical algorithm

• Inference using Bayesian belief propagation

•Sparse Distributed Representations

•Prediction using temporal context

•Biologically accurate
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Generative Model : Hierarchical Temporal World
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Learning in a node

• Level by level learning

• Each node

— Stores co-occurrence 
patterns

— Learns sequences

Coincidence patterns

Markov chains
(sequences)
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Video surveillance



Temporal Inference Demo (Preliminary Results)

TBI

non-TBI



What is happening behind the scenes?



Recognition/Prediction/Attention in HTMs

• Inference is done using Bayesian Belief 
Propagation on HTM hierarchy

— Probabilistic Reasoning in Intelligent Systems by Judeal Pearl
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Bayesian computation in the brain

• Hierarchical Bayesian inference is gaining acceptance as 
the framework for understanding cortical computation

• Lee and Mumford 2003

• “Bayesian framework is not yet a neural model. 
[Bayesian] framework currently helps explain the 
computations that underlie various brain functions, but 
not how the brain implements those computations”

• Hegde & Felleman 2007
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Our hypothesis

Bayesian Belief Propagation equations on 
HTMs correspond to the operations done 
by cortical microcircuits during inference.
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Belief propagation in HTMs : Equations

23

(1) 
Coincidence 
likelihood

(2) Markov 
chain 
likelihood

(3) 
Coincidence 
Belief

(4) Feedback 
messages
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Proposal:

 A set of layer 2/3 neurons 
implement sequence inference using 
dynamic programming



Dynamic programming for Markov chain inference
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Dynamic programming 
calculates these 
likelihoods efficiently
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Layer 2/3 circuit (1)
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Data : Layer 2/3

• Major excitatory projection of layer 4 is to layers 2/3.

• Thomson & Lamy 2007

• Layer 4 spiny neurons in the barrel cortex are characterized by 
vertically oriented intra-columnar axons that target Layer 2/3 
pyramidal cells

• Lubke & Feldmeyer 2007

• Cells in layer 2/3 are complex cells that prefer richer stimuli, such 
as motion in the preferred direction

• Hirsch and Martinez 2006
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Cortical circuit from HTM belief propagation
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Summary of laminar functions

• Layer 4

— Coincidence detection

• Layer 2/3

— Feedforward inference on Markov chains (complex cells)

— Feedback inference on Markov chains (complex cells)

• Layer 5

— Assimilation (marginalization) of feedback information

— Timing

• Layer 6

— Computation of top-down messages from layer 5 outputs
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Illusory Contours

Lee and Mumford, J.Opt. Soc. America. July 2003



Illusory Contours
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No contours

36



Bottom-up. No Top-down
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Bottom-up And Top-Down
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Subjective Contour
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Computing platform prognosis

• Algorithms are mature enough in application areas like 
vision

• It is very likely that there will be embedded applications 
in near future

• The first embedded circuits are likely to be inference-only

— Learning done offline using parallel software

• Time is right to start specing out a computational platform 
for HTM-like computation
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To learn more

• Download Vision4 Demo from www.numenta.com

• Read On Intelligence

• Read white papers from Numenta website

• Read Dileep’s PhD thesis “How the brain might work...

— search for “Dileep thesis” on google
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Thank You


