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Neocortex Organization : 2 minute version
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Hardware/software design challenges

e Adaptive computing
— Reconfigures connections.

— Might need to allocate more resources during the initial
stages of learning

e Algorithms are still evolving
— Might be mature enough for some application areas

— Inference algorithms might be more stable than
learning algorithms

e Solution?
— Abstract and formalize

— Parameterize the degrees of freedom
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Aspiration

e Can we come to a set of mathematical equations that
model cortical function?

—Something like Maxwell’s equations for
electromagnetic waves

— Assigns functions/equations for laminar circuits

e Audacious
— But this is the season of Hope and Change
— Yes we can!!



















Hierarchical Temporal Memory

e Is a model for neocortical operation
—Nodes organized in a hierarchy
—Each node uses the same algorithm




Features of HTM (Principles of Cortex-like computation)

e Hierarchy in space and time

e Feed-forward and feedback connections

e Common cortical algorithm

e Inference using Bayesian belief propagation
e Sparse Distributed Representations

e Prediction using temporal context

e Biologically accurate




Hierarchical Temporal Memory




Hierarchical Temporal Memory




Hierarchical Temporal Memory




Hierarchical Temporal Memory




Hierarchical Temporal Memory




Hierarchical Temporal Memory




Spatial/temporal hierarchies in the world

Largel Spatial Scales/
Slow temporal scales.
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Generative Model : Hierarchical Temporal World
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Learning in a node
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Learning in a node

e Level by level learning
e Each node

— Stores co-occurrence
patterns

— Learns sequences

Markov chains
(sequences)

/

Coincidence patterns







Video surveillance




Temporal Inference Demo (Preliminary Results)

Running inference
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What is happening behind the scenes!?




Recognition/Prediction/Attention in HTMs

e Inference is done using Bayesian Belief
Propagation on HTM hierarchy

— Probabilistic Reasoning in Intelligent Systems by Judeal Pearl
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Bayesian computation in the brain

e Hierarchical Bayesian inference is gaining acceptance as
the framework for understanding cortical computation

e Lee and Mumford 2003

e “Bayesian framework is not yet a neural model.
[Bayesian] framework currently helps explain the
computations that underlie various brain functions, but
not how the brain implements those computations”

e Hegde & Felleman 2007




Our hypothesis

Bayesian Belief Propagation equations on
HTMs correspond to the operations done
by cortical microcircuits during inference.
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Belief propagation in HTMs : Equations

(1)
Coincidence
likelihood

M
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1=1
where coincidence-pattern ¢; is the co-occurrence of r;* 'th Markov chain
from child 1, »/"#’th Markov chain from child 2, ---, and r["*’th Markov
chain from child M.

(2) Markov
chain
likelihood
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Proposal:

A set of layer 2/3 neurons

implement sequence inference using
dynamic programming




Dynamic programming for Markov chain inference

What is the likelihood
of Markov chain 17
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Calculate the likelihood of Markov chains
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Data : Layer 2/3

e Major excitatory projection of layer 4 is to layers 2/3.
e Thomson & Lamy 2007

e Layer 4 spiny neurons in the barrel cortex are characterized by
vertically oriented intra-columnar axons that target Layer 2/3
pyramidal cells

e Lubke & Feldmeyer 2007

e Cells in layer 2/3 are complex cells that prefer richer stimuli, such
as motion in the preferred direction

e Hirsch and Martinez 2006




Cortical circuit from HTM belief propagation
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Summary of laminar functions

Layer 4
— Coincidence detection
Layer 2/3
— Feedforward inference on Markov chains (complex cells)
— Feedback inference on Markov chains (complex cells)
Layer 5
— Assimilation (marginalization) of feedback information
— Timing
Layer 6

— Computation of top-down messages from layer 5 outputs




Illusory Contours
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Lee and Mumford, J.Opt. Soc. America. July 2003







Numenta Vision Test App - Subjectivel.png
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Bottom-up. No Top-down
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Bottom-up And Top-Down
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Subjective Contour
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Computing platform prognosis

e Algorithms are mature enough in application areas like
vision

e It is very likely that there will be embedded applications
in near future

e The first embedded circuits are likely to be inference-only

— Learning done offline using parallel software

e Time is right to start specing out a computational platform
for HTM-like computation




To learn more

Download Vision4 Demo from www.numenta.com

Read On Intelligence
Read white papers from Numenta website
Read Dileep’s PhD thesis “How the brain might work...

— search for “Dileep thesis” on google



http://www.numenta.com
http://www.numenta.com
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